CHEMISTRY -I

SECTION - A (Marks 17)

Time Allowed: 25 minutes

Section - A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/ overwriting is not allowed. Do not use lead pencil.

SENDUP EXAMS, 2023

Student Name:

\qquad

Candidate Sign. \qquad

Answer Sheet No: \qquad
Invigilator Sign: \qquad

د ا ـــر
Fill the relevant bubble against each question according to curriculum:

8.	In the ground state of an atom, the electron is present:	in the valence shell	in the second shell	nearest to the nucleus	farthest from the nucleus	O	O	\bigcirc	O
9.	pH of $1 \times 10^{-4} \mathrm{M}$ solution of Phosphoric acid is:	1.10	2.02	3.52	4.13	\bigcirc	O	\bigcirc	O
10.	Diamond is bad conductor of electricity because of:	Tight structure	High density	No free electrons	Transparent of light	\bigcirc	0	0	0
11.	Which of these samples of gas contains the same number of atoms as 1 g of hydrogen molecule? (At. Mass $\mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=$ $1, \mathrm{Ne}=20$)	22 g of CO2	8 g of CH 4	20 g of Ne	8 g of O3	O	O	\bigcirc	O
12.	In which one of the following pairs do the molecules have similar shapes?	CO_{2} and AlCl_{3}	$\mathrm{NH}_{2}{ }^{-1}$ and $\mathrm{H}_{2} \mathrm{O}$	CH_{4} and PH_{3}	NH_{3} and BCl_{3}	O	O	O	O
13.	For principle quantum number, $n=4$, the total number of orbitals having I $=3 \text { and } m=-1,0 \text { is }$		6	10	14	0	0	\bigcirc	O
14.	In the mixture of NO and CO_{2} containing 4 mole of NO and $0.9 \mathrm{~mole} \mathrm{CO}_{2}$ at initially. At equilibrium 0.1 mole of CO_{2} was present what is K_{c} ? $\mathrm{NO}+\mathrm{CO}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{CO}$	0.2	2.0		5.0	O	O	O	O
15.	The solubility of $A_{2} B_{3}$ is x mol L- ${ }^{-1}$. It solubility product is:	$6 x^{5}$		$36 x^{5}$	108	0	O	O	O
16.	For the reaction products, doubling the concentration of A the rate of the reaction is doubled, but on doubling the concentration of B rate remains unaltered. The overall order of the reaction is:			2	3	0	O	O	O
17.	Octet rule is not followed in the formation of:	PCl5	CCl_{4}	NF_{3}	CF_{4}	0	O	O	0

HCCS Educational System (SENDUP EXAMS, 2023)
 CHEMISTRY HSSC-I

Total Marks: 68
Note: Answer all parts from Section 'B' and all questions from Section 'C' on the E-sheet. Write your answer on the allotted/given spaces.

SECTION-B (Marks 42)

Q. 2 Attempt all parts questions. All questions carry equal marks.

(14×3 = 42)
i. The bond angles of $\mathrm{H}_{2} \mathrm{O}$ and NH_{3} are not 109.5° as that of CH_{4}. Although O and N atoms are Sp 3 hybridized. Give reason.
ii. How many grams of NH 3 will have the same number of molecules as 15.0 g of C 6 H 6 ?

How can sodium chloride and glucose be dissolved in water? What important forces exist between solute and solvent particles in these solutions?
iii. Calculate molality of aqueous solution of sulfuric acid from the following data. (1+2)

Molar mass 98, Molarity 18M \& Density in g/Cm3 1.84

OR

Find PH of buffer $\left(\mathrm{CH}_{3} \mathrm{COOH} / \mathrm{CH}_{3} \mathrm{COONa}\right.$) containing $0.25 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ and $0.15 \mathrm{CH}_{3} \mathrm{COONa}$. K for $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.8×10^{-5}. $\quad[\mathrm{H}=1, \mathrm{~S}=32, \mathrm{O}=16]$
(1+2)
iv. Interpret why water and ethanol can mix easily in all proportions?

How sigma (σ) bond is different from a pi (π) bond?
(3)
v. What are quantum numbers? Which Quantum number cannot be explained on the basis of Bohr's Atomic Model?
$(1+2)$

OR

The melting and boiling points of hydrazine Propanol are much higher than those of propanone. Give reason.
vi. Calculate the POH of $0.01 \mathrm{M}_{2} \mathrm{X}$ dibasic acid when dissolved in water.
(1.5+1.5)

OR
0.350 moles of SO_{3} is placed in a $1.0 \mathrm{dm}^{3}$ flask and allowed to come equilibrium. 0.207 mole of SO_{3} remains at equilibrium. Calculate K_{c} of the reaction.
vii. Potassium dichromate solution has beautiful orange colour. When a salt is dissolved in water, the following equilibrium is setup.
(3)
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CrO}_{4}^{-2}+2 \mathrm{H}^{+}$
What will happen if?
a. Dilute sodium hydroxide is added to solution.
b. Dilute hydrochloric acid is added.

OR
Define the following with one example for each:

$$
(1+1+1)
$$

a) Partial miscible liquid
b) Conjugate solution
c) Upper consulate temperature
viii. As both NF_{3} and BF_{3} are tetra atomic molecules but have different geometry. Explain each according to VSEPR theory.
(1.5+1.5)

OR

The value of $K c$ for the reaction $2 \mathrm{~A} \rightleftharpoons \mathrm{~B}+\mathrm{C}$ is 2×10^{-3}. At a given time, the composition of reaction mixture is $[\mathrm{A}]=[\mathrm{B}]=[\mathrm{C}]=3 \times 10^{-4} \mathrm{M}$. In which direction the reaction will proceed?
(3)
ix. Analyze the activation energy diagram shown below for the hypothetical reaction:
$E+2 F \rightarrow G+H$ and answer the following questions:
$(1+1+1)$

iii) What is the energy of the activated complex?

OR
Write an equation to show energy difference between two energy levels, also calculate ionization Energy of H -atom.
x. Why $\mathrm{O}_{2}{ }^{-1}$ is paramagnetic in nature and explain by Molecular Orbital Theory.

What are buffer solutions? Name their types with examples.
$(1+2)$

490 g of KClO_{3} decompose by heating to produce oxygen gas and potassium chloride. Calculate the following:
a. Moles of oxygen produce
b. Number of molecules produce
c. Volume of the gas produce at S.T.P
xii. An aqueous solution of ammonium chloride is acidic and that of sodium acetate is basic in nature.

Give reason with the help of equation.
OR
(3)

OR

a. SO_{2}
b. $\mathrm{H}_{3} \mathrm{O}^{+}$
xiii. Why F_{2} is gas at room temperature but I_{2} is solid at room temperature?

Heats of solution got an important applications in treatment of injuries and wounds. Justify the statement with the help of exothermic and endothermic heats of solutions. (1.5+1.5)
xiv.

Calculate the molality of $15 \%(\mathrm{w} / \mathrm{w})$ of Urea $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$ solution.
$[\mathrm{N}=14, \mathrm{C}=12, \mathrm{O}=16]$
OR
Chemical kinetics is concerned with rates of chemical reactions and factors that affects the rates of chemical reactions. Consider the following steps of reactions:
$\mathrm{FeCl}_{3(\mathrm{aq})}+2 \mathrm{KI}_{(\mathrm{aq})} \rightarrow \mathrm{FeI}_{2(\mathrm{aq})}+2 \mathrm{KCl}_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$ (slow)
$2 \mathrm{KI}_{(\mathrm{aq})}+2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{KCl}_{(\mathrm{aq})}+\mathrm{I}_{2(\mathrm{aq})}$ (fast)
Write the rate law and calculate the order for the above reactions.

SECTION C (Marks 26)

Note: Attempt all the questions. All questions carry equal marks.

Q. 3 Derive the equation for the radius of nth orbit of hydrogen atom using Bohr's model.

OR

What is Buffer Solution? Explain working of Buffer Solution when acid and base added to them. How many factors affecting on buffer solution?
$1+2+2+2$
Q. 4 Solvay process is used to manufacture sodium carbonate. During this process ammonia is recovered by the following reaction.
$2 \mathrm{NH} 4 \mathrm{Cl}+\mathrm{Ca}(\mathrm{OH}) 2 \rightarrow \mathrm{CaCl} 2+2 \mathrm{H} 2 \mathrm{O}+2 \mathrm{NH} 3$
When 100 g of ammonium chloride and 150 g calcium hydroxide are used then
i. Calculate the mass in kg of ammonia produce during chemical reaction.
ii. Calculate the excess mass in gram of one of the reactants left unreacted.

$$
\text { (At. Mass } \mathrm{N}=14, \mathrm{H}=1, \mathrm{Cl}=35.5, \mathrm{Ca}=40 \text {) }
$$

OR

Phosgene (COCl 2) is a toxic gas. This gas is prepared by the reaction of carbon monoxide with chlorine. $\mathrm{CO}(\mathrm{g})+\mathrm{Cl} 2(\mathrm{~g}) \mathrm{COCl} 2(\mathrm{~g})$ obtained for kinetic study of this reaction
$(4+2)$

Experiment	Initial $[\mathrm{CO}]$	Initial $[\mathrm{Cl} 2]$	Initial rate (moles dm-3 s-1)
1	1.000	0.100	$1.29 \times 10-29$
2	0.100	0.100	$1.30 \times 10-30$
3	0.100	1.000	$1.30 \times 10-30$

i. Use the above data and deduce the order of the reaction with respect to CO and Cl 2 .
ii. Write rate law/equation for this reaction.
Q. 5 Consider the following reaction:

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2}
$$

i. Derive expression of K_{c} and unit for the above reaction.
ii. Calculate equilibrium concentration of N2. The equilibrium concentration of H 2 and NH 3 are 1.0 $\mathrm{mol} / \mathrm{dm} 3$ and 0.5 moldm- ${ }^{3}$ respectively. K_{c} of above reaction at $25^{\circ} \mathrm{C}$ is $1.85 \times 10-3$.

OR
What is hybridization? Explain the SP hybridization with structure of Ethyne?
Q. 6 Define catalysis and its types with two examples in each case.

OR
a) What is solubility product? Calculate the solubility product of $A_{m} B_{n}$. 3
b) What is Bond energy and how many factors effect on bond energy and explain with one example in each factor.

