HOOS EDUCATIONAL SVOTEM					ROI	LL NUM	IBE	R	
HCCS EDUCATIONAL SYSTEM					B				2
HSSC – I					0	00		9	0
	CHEM	ISTRY -	·I		1	1)	D (1)
	SECTION -	A (Mar	ks 17)		2	2	\mathbf{O}	2) (2
	Time Allowed: 25 minutes					3		3)	3
Section – A is compulsory. All parts of this section are to be answered on this page and handed over to the Centre Superintendent. Deleting/ overwriting is not allowed.						(4) (4) (4)		•) (4)
						6		5) (5
	دوبارہ لکھنے کی اجازت نہیں ہے۔ لیڈ پنسل کا استعمال ممنوع ہے۔					00		20	৽
								20	2 2
						00		ົ້	୍ଚ ର
	Y Y	HGSC V				00			9
	SENDUF	P EXAMS, 202	23						
St	udent Name:			Answer She	et No:				
Ca	Indidate Sign.			Invigilator S	ign:				
		e e	5 8	:	< 11				
<u>مت</u> ان -	ونم کے مصابق در دائرہ کہ بر کرب	ے، کریک	دیے دیے	سا ملنے	اں کے	_ سو	ہر		
Fill the relevant bubble against each question according to curriculum:									
	Questions سوال Bate equation for a reaction	Α	В	С	D	Α	В	С	D
1.	2A product is Rate = $K [A]^2$. Unit of specific rate constant for this reaction is:	mol ² dm ⁻⁶ S ⁻¹	mol ⁻¹ dm ³ S ⁻¹	moldm ⁻³	S-1	0	0	0	0
2.	A substance which itself is not a catalyst but increases the activity of a catalyst is called:	Enzymes	Inhibitors	Promoters	Poisoner	0	0	0	0
3.	Mixture containing 0.01 mole/300cm3 of NH4Cl and 0.1 mole/400cm3 of NH4OH having pKb = 5 has pH of:	4.12	3.98	4.00	10.0	0	0	0	0
4.	5g of urea (M.wt = 60) is dissolved in 250 cm3 of its solution. Concentration of solution will be:	5 % w/w	5 % v/w	0.34 M	0.34m	0	0	0	0
5.	The gaseous element X exists in diatomic form. One volume of the element X combines with two volume of hydrogen to form two	HX ₂	HX3	H ₂ X	НХ	0	0	0	0
	volume of gaseous hydride. What is the formula of hydride of X.?								
6.	volume of gaseous hydride. What is the formula of hydride of X.? The number of bonds in one molecule of Nitrogen is:	one σ and one pie	one σ and two pie	three σ bond	two σ and one pie	¹ O	0	0	0

8.	In the ground state of an atom, the electron is present:	in the valence shell	in the second shell	nearest to the nucleus	farthest from the nucleus	0	0	0	0
9.	pH of 1 \times 10 ⁻⁴ M solution of Phosphoric acid is:	1.10	2.02	3.52	4.13	0	0	0	0
10.	Diamond is bad conductor of electricity because of:	Tight structure	High density	No free electrons	Transparent of light	0	0	0	0
11.	Which of these samples of gas contains the same number of atoms as 1g of hydrogen molecule? (At. Mass C = 12, O = 16, H = 1, Ne = 20)	22 g of CO2	8 g of CH4	20 g of Ne	8 g of O3	0	0	0	0
12.	In which one of the following pairs do the molecules have similar shapes?	CO ₂ and AICI ₃	NH_2^{-1} and H_2O	CH_4 and PH_3	NH_3 and BCI_3	0	0	0	0
13.	For principle quantum number, n = 4, the total number of orbitals having I = 3 and m = -1,0 is	4	6	10	14	0	0	0	0
14.	In the mixture of NO and CO ₂ containing 4 mole of NO and 0.9 mole CO ₂ at initially. At equilibrium 0.1 mole of CO ₂ was present what is K _c ? NO + CO ₂ \rightarrow NO ₂ + CO	0.2	2.0	0.5	5.0	0	0	0	0
15.	The solubility of A ₂ B ₃ is x mol L ⁻¹ . It solubility product is:	6 x⁵	64 x ⁵	36 x⁵	108 x ⁵	0	0	0	0
16.	For the reaction products, doubling the concentration of A the rate of the reaction is doubled, but on doubling the concentration of B rate remains unaltered. The overall order of the reaction is:		0	2	3	0	0	0	0
17.	Octet rule is not followed in the formation of:	PCI5	CCI4	NF3	CF4	0	0	0	0

CHEMISTRY HSSC-I

Note: Answer all parts from Section 'B' and all questions from Section 'C' on the E-sheet. Write your

Total Marks: 68

Time allowed: 2:40 Hours

	an	swer on the allotted/given spaces.
		SECTION-B (Marks 42)
0.2	At	tempt all parts questions. All questions carry equal marks. $(14 \times 3 = 42)$
	i	The bond angles of H_2O and NH_2 are not 109 5° as that of CH ₄ . Although O and N atoms are Sn3
		hybridized Give reason (1+2)
		OR OR
		Explain the origin of spectral lines of Lyman, Balmer and Paschen series in H-atom. (1+1+1)
	ii.	How many grams of NH3 will have the same number of molecules as 15.0 g of C6H6? (3)
		[C=12, H=1]
		OR OR
		How can sodium chloride and glucose be dissolved in water? What important forces exist between
		solute and solvent particles in these solutions? (1.5 + 1.5)
	iii. 🔍	Calculate molality of aqueous solution of sulfuric acid from the following data. (1+2)
		Molar mass 98, Molarity 18M & Density in g/Cm3 1.84
		OR
		Find PH of buffer (CH ₃ COOH/CH ₃ COONa) containing 0.25M CH ₃ COOH and 0.15 CH ₃ COONa. K _a for
		CH ₃ COOH is 1.8 x10 ⁻⁵ . [H=1, S=32, O=16] (1+2)
	iv.	Interpret why water and ethanol can mix easily in all proportions? (1+2)
		OR
		How sigma (σ) bond is different from a pi (π) bond? (3)
	ν.	What are quantum numbers? Which Quantum number cannot be explained on the basis of Bohr's
	1.00	Atomic Model? (1+2)
	1	OR
	111	The melting and boiling points of hydrazine Propanol are much higher than those of propanone.
		Give reason. (3)
	vi.	Calculate the POH of $0.01M H_2X$ dibasic acid when dissolved in water. (1.5+1.5)
		0.350 moles of SO ₃ is placed in a 1.0 dm ³ flask and allowed to come equilibrium. 0.207 mole of SO ₃
		remains at equilibrium. Calculate K_c of the reaction. (3)
	VII.	following equilibrium is solution has beautiful orange colour. When a salt is dissolved in water, the
		$Cr_{2}O^{-2} + H_{2}O \rightarrow Cr_{2}O^{-2} + 2H^{+}$
		$U_2 = U_1 $
		a Dilute sodium bydroxide is added to solution
		h Dilute bydrochloric acid is added
		OR
		Define the following with one example for each: (1+1+1)
		a) Partial miscible liquid
		b) Conjugate solution
		c) Upper consulate temperature
•	viii.	As both NF_3 and BF_3 are tetra atomic molecules but have different geometry. Explain each
		according to VSEPR theory. (1.5+1.5)
		OR
		The value of Kc for the reaction $2A \Rightarrow B + C$ is 2×10^{-3} . At a given time, the composition of reaction
		mixture is $[A] = [B] = [C] = 3 \times 10^{-4}$ M. In which direction the reaction will proceed?
		(3)
	ix.	Analyze the activation energy diagram shown below for the hypothetical reaction:
		$E + 2F \rightarrow G + H$ and answer the following questions: (1+1+1)
		Slave /

i) What is the activation energy for the forward reaction? The reverse reaction?

ii) What is the value of ΔH for the forward reaction? The reverse reaction?

iii) What is the energy of the activated complex?

OR

Write an equation to show energy difference between two energy levels, also calculate ionization Energy of H-atom. (1+2)

x. Why
$$Q_2^{-1}$$
 is paramagnetic in nature and explain by Molecular Orbital Theory. (3)
OR
What are buffer solutions? Name their types with examples.
xi. Consider this graph and explain on the basis of Maxwell Boltzmann.
(3)
OR
490g of KCIO; decompose by heating to produce oxygen gas and potassium chloride. Calculate the following:
a. Moles of oxygen produce
b. Number of molecules produce
c. Volume of the gas produce at 5.7.P
xii. An aqueous solution of ammonium chloride is acidic and that of sodium acetate is basic in nature.
Give reason with the help of equation.
Discuss the shape of following molecules according to VSEPR Theory
a. So₂ are for the gas produce at 5.7.P
xiii. Why T_2 is gas at room temperature but T_2 is solid at room temperature?
(3)
Discuss the shape of following molecules according to VSEPR Theory
a. So₂ are of momentum chloride is acidic and that of sodium acetate is basic in nature.
Give reason with the help of equation.
What is gas at room temperature but T_2 is solid at room temperature?
(3)
Heats of solution got an important applications in treatment of injuries and wounds. Justify the statement with the help of exothermic and endothermic heats of solutions, (1.5+1.5)
xiv. Calculate the molality of 15% (w/w) of Urea (WHz)/CO solution.
(1) FeCL_{(equ} + 2K(equ) - FeL_{2(qu}) + 2KC(equ) + C(equ) (Glow)
ZK(equ) + ZK(equ) - 2KC(equ) + 2KC(equ) + C(equ) (26)
Q. Chemical kinetics is concerned with rates of chemical reactions and factors that affects the rates of chemical insections. All questions carry equal marks.
(26)
Q. Derive the equation of the radius of nth orbit of hydrogen atom using Bohr's model. (2+5)
OR
What is Buffer Solution? Explain working of Buffer Solution when acid and base added to them.
How many factors affecting on buffer solution?
H=24 (2 Solvay process is used to manufacture sodium carbonate. During this process ammonia is
recovered by the following reaction.
(3+3)
2NH4Cl + Ca(OH)2 \rightarrow CaCl2 + 2H2O +2NH3
When 100 g of ammoniu

Experim	nent Initial [CO]	Initial [Cl2]	Initial rate (moles dm-3 s-1)
1	1.000	0.100	1.29×10-29
2	0.100	0.100	1.30×10-30
3	0.100	1.000	1.30×10-30
i. L	Jse the above data and deduce	e the order of the rea	ction with respect to CO and Cl2.

ii. Write rate law/equation for this reaction.

- **Q.5** Consider the following reaction: $N_2 + 3H_2 \rightarrow 2NH_3$ (3+3)
 - i. Derive expression of K_{c} and unit for the above reaction.

ii. Calculate equilibrium concentration of N2. The equilibrium concentration of H2 and NH3 are 1.0 mol /dm3 and 0.5 moldm-³ respectively. K_c of above reaction at 25°C is 1.85 ×10-3.

OR

What is hybridization? Explain the SP hybridization with structure of Ethyne? 6

- Q.6 Define catalysis and its types with two examples in each case. (3+3+1) OR
 - a) What is solubility product? Calculate the solubility product of A_m B_n.
 - b) What is Bond energy and how many factors effect on bond energy and explain with one example in each factor.
 4

3